BAB IV HASIL PENELITIAN

A. Deskripsi Data

Setelah didapatkan instrumen yang valid dan reliabel, selanjutnya instrumen diberikan pada sampel eksperimen yang terdiri dari 32 siswa dari kelas XII MIPA 7 SMAN 3 Sidoarjo. Berdasarkan data angket tipe kepribadian yang telah didapat (lampiran 5) ada 2 orang siswa dengan kategori seimbang (kepribadian tidak dominan ekstrovert maupun introvert), dan 2 orang siswa yang lain dengan skala kebohongan tinggi maka tidak diikutkan sebagai sampel penelitian. Berikut data skor kemampuan penalaran matematika dalam memecahkan masalah dari 28 siswa yang menjadi sampel penelitian.

Tabel 4. 1 Skor Kemampuan Penalaran Matematika dalam Memecahkan Masalah pada Kelas Eksperimen

No.	Nama	Skor
1.	AE	80
2.	AY	77,5
3.	AH	82,5
4.	AAMS	90
5.	AF	60
6.	AW	92,5
7.	AAP	80
8.	AMF	85
9.	APP	85
10.	AN	90
11.	AM	81,5
12.	AER	90
13.	DL	62,5
14.	DSO	92,5
15.	EMAR	72,5
16.	EPA	83,5
17.	FA	88
18.	FAMH	82,5
19.	ITR	75
20.	KNR	82,5
21.	MA	79,5

No.	Nama	Skor
22.	NYA	77,5
23.	NFCY	82,5
24.	PA	60,5
25.	RN	72,5
26.	RLK	65
27.	RRA	81,5
28.	ZAWI	62,5
Skor Total		2214,5
\overline{x}		79,0893

B. Analisis Data

Untuk megetahui ada atau tidaknya perbedaan yang signifikan kemampuan penalaran matematika dalam memecahkan masalah antara siswa bertipe kepribadian ekstrovert dan introvert maka peneliti menggunakan uji kesamaan dua rata-rata yaitu Uji-T dengan terlebih dahulu dilakukan uji normalitas dan uji homogenitas.

1. Uji Normalita<mark>s</mark>

Setelah diperoleh data berupa skor kemampuan penalaran matematika dalam memecahkan masalah pada kelas eksperimen, selanjutnya dilakukan uji normalitas dengan langkah-langkah sebagai berikut.

Langkah pertama: Menentukan hipotesis

 H_0 = Data skor kemampuan penalaran matematika dalam memecahkan masalah berdistribusi normal

 H_a = Data skor kemampuan penalaran matematika dalam memecahkan masalah tidak berdistribusi normal

Langkah ke dua: Data skor kemampuan penalaran matematika dalam memecahkan masalah diurutkan dari yang terendah. Kemudian menentukan $\mathbf{z}_i = \frac{x_i - \bar{x}}{s}$ dengan s adalah standar deviasi, $S(z_i)$ = (banyaknya z yang kurang atau sama dengan z_i)/ n dan $F(z_i)$ = nilai probabilitas z_i dilihat dengan menggunakan tabel distribusi normal (z).

Tabel 4. 2 Hasil Skor Kemampuan Penalaran Matematika dalam Memecahkan Masalah untuk Menghitung Standar Deviasi

No.	$(x-\overline{x})^2$
1.	0,8294
2.	2,5258
3.	11,6330
4.	119,0437
5.	364,4008
6.	179,8473
7.	0,8294
8.	34,9365
9.	34,9365
10.	119,0437
11.	5,8115
12.	119,0437
13.	2 <mark>75</mark> ,2044
14.	1 <mark>79</mark> ,8473
15.	<mark>43,</mark> 4187
16.	19, 4544
17.	79,4008
18.	11,6330
19.	16,7223
20.	11,6330
21.	0,1687
22.	2,5258
23.	11,6330
24.	345,5615
25.	43,4187
26.	198,5080
27.	5,8115
28.	275,2044
Σ	2513,0268

Standar deviasi dicari dengan rumus berikut:

Standar deviasi dic

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

$$= \sqrt{\frac{2513,0268}{27}}$$

$$= 9.6475$$

Tabel 4. 3 Hasil Skor Kemampuan Penalaran Matematika dalam Memecahkan Masalah untuk Uji Normalitas

No.	x_i	$x_i - \overline{x}$	\boldsymbol{z}_i	$S(z_i)$	$F(z_i)$	$ F(z_i) - S(z_{i-1}) $
1.	60	-19,0893	-1,9787	0,0357	0,0239	0,0239
2.	60,5	-18,5893	-1,9268	0,0714	0,0270	0,0087
3.	62,5	-16,5893	-1 <mark>,7</mark> 195	0,1071	0,0428	0,0287
4.	62,5	-16,5893	-1,7195	0,1429	0,0428	0,0644
5.	65	-14,0893	-1,4604	0,1786	0,0721	0,0708
6.	72,5	-6,5893	-0,6830	0,2143	0,2473	0,0687
7.	72,5	-6,5893	-0,6830	0,2500	0,2473	0,0330
8.	75	-4,0893	-0,4239	0,2857	0,3358	0,0858
9.	77,5	-1,5893	-0,1647	0,3214	0,4346	0,1489
10	77,5	-1,5893	-0,1647	0,3571	0,4346	0,1131
11.	79,5	0,4107	0,0426	0,3929	0,5170	0,1598
12.	80	0,9107	0,0944	0,4286	0,5376	0,1447
13.	80	0,9107	0,0944	0,4643	0,5376	0,1090
14.	81,5	2,4107	0,2499	0,5000	0,5987	0,1344
15.	81,5	2,4107	0,2499	0,5357	0,5987	0,0987
16.	82,5	3,4107	0,3535	0,5714	0,6382	0,1024
17	82,5	3,4107	0,3535	0,6071	0,6382	0,0667
18	82,5	3,4107	0,3535	0,6429	0,6382	0,0310
19.	82,5	3,4107	0,3535	0,6786	0,6382	0,0047
20.	83,5	4,4107	0,4572	0,7143	0,6762	0,0023
21.	85	5,9107	0,6127	0,7500	0,7300	0,0157
22.	85	5,9107	0,6127	0,7857	0,7300	0,0200
23.	88	8,9107	0,9236	0,8214	0,8222	0,0364
24.	90	10,9107	1,1309	0,8571	0,8710	0,0495
25.	90	10,9107	1,1309	0,8929	0,8710	0,0138

No.	x_i	$x_i - \overline{x}$	z_i	$S(z_i)$	$F(z_i)$	$ F(z_i) - S(z_{i-1}) $
26.	90	10,9107	1,1309	0,9286	0,8710	0,0219
27.	92,5	13,4107	1,3901	0,9643	0,9177	0,0108
28.	92,5	13,4107	1,3901	1,0000	0,9177	0,0465

Langkah ke tiga: Menentukan L_{hitung} dan L_{tabel}

$$L_{hitung} = |F(z_i) - S(z_{i-1})| \text{ terbesar}$$

$$= 0.1598$$

$$L_{tabel} = L_{n,a}$$

$$= L_{28:0.05}$$

Langkah ke empat: Menarik kesimpulan. Karena $L_{\text{hitung}} < L_{\text{tabel}}$, maka terima H_0 . Sehingga dapat disimpulkan bahwa data yang didapat berdistribusi normal.

2. Uji Homogenitas

Setelah dilakukan uji normalitas, peneliti melakukan uji homogenitas data menggunakan uji-F dengan langkah-langkah sebagai berikut:

Langkah pertama: Menentukan hipotesis H_0 : varians kedua kelompok data homogen.

 H_a : varians kedua kelompok data tidak homogen.

Langkah kedua: Mengelompokkan data skor kemampuan penalaran matematika dalam memecahkan masalah berdasarkan tipe kepribadian siswa dan menentukan varians masing-masing kelompok data.

Tabel 4. 4
Hasil Skor Kemampuan Penalaran Matematika dalam
Memecahkan Masalah pada Siswa Bertipe Kepribadian
Ekstrovert untuk menghitung Varians

No.	Nama	Skor (x)	$(x-\overline{x})^2$
1.	AER	90	212,3265
2.	AF	60	238,0408
3.	AH	82,5	50,0051
4.	AM	81,5	36,8622
5.	AMF	85	91,6122
6.	DL	62,5	167,1480
7.	DSO	92,5	291,4337
8.	EMAR	72,5	8,5765

No.	Nama	Skor (x)	$(x-\overline{x})^2$
9.	ITR	75	0,1837
10.	NYA	77,5	4,2908
11.	PA	60,5	222,8622
12.	RN	72,5	8,5765
13.	RRA	81,5	36,8622
14.	ZAWI	62,5	167,1480
	Σ	1056	1535,9286
\overline{x}		75,4286	

Berdasarkan tabel tersebut, diperoleh varians skor kemampuan penalaran matematika dalam memecahkan masalah pada siswa bertipe kepribadian ekstrovert sebagai berikut:

$$s^{2} = \frac{\sum (x - \bar{x})^{2}}{n - 1}$$
$$= \frac{1535,9286}{13}$$
$$= 118,1484$$

Tabel 4. 5
Hasil Skor Kemampuan Penalaran Matematika dalam
Memecahkan Masalah pada Siswa Bertipe Kepribadian
Introvert untuk Menghitung Varians

No.	Nama	Skor (x)	$(x-\overline{x})^2$
1.	AAMS	90	52,5625
2.	AAP	80	7,5625
3.	AE	80	7,5625
4.	AN	90	52,5625
5.	APP	85	5,0625
6.	AW	92,5	95,0625
7.	AY	77,5	27,5625
8.	EPA	83,5	0,5625
9.	FA	88	27,5625
10.	FAMH	82,5	0,0625
11.	KNR	82,5	0,0625
12.	MA	79,5	10,5625
13.	NFCY	82,5	0,0625
14.	RLK	65	315,0625
	Σ	1158,5	601,8750

No.	Nama	Skor (x)	$(x-\overline{x})^2$
\overline{x}		82,75	

Berdasarkan tabel tersebut, diperoleh varians skor kemampuan penalaran matematika dalam memecahkan masalah pada siswa bertipe kepribadian introvert sebagai berikut:

$$s^{2} = \frac{\sum (x - \bar{x})^{2}}{n - 1}$$

$$= \frac{601,8750}{13}$$

$$= 46,2981$$

Langkah ke tiga: Menentukan F_{hitung} sebagai berikut:

$$F_{hitung} = \frac{s_1^2}{s_2^2}$$

$$= \frac{118,1484}{46,2981}$$

$$= 2,5519$$

Langkah ke empat: Menentukan F_{tabel}

$$F_{tabel} = F_{db_1,db_2,a}$$

$$= F_{n_1-1,n_2-1,a}$$

$$= F_{13;13;0,05}$$

$$= 2,5769$$

Langkah ke lima: Menarik kesimpulan.

 $F_{\rm hitung}$ < $F_{\rm tabel}$ maka terima H₀, sehingga dapat disimpulkan bahwa varians kedua kelompok data homogen.

3. Uji Kesamaan Dua Rata-rata (Uji T)

Setelah normalitas dan homogenitas data terpenuhi, kemudian dilanjutkan dengan uji kesamaan dua rata-rata pada data kemampuan penalaran matematika dalam memecahkan masalah siswa bertipe kepribadian ekstrovert dan introvert.

Langkah pertama: Menentukan hipotesis

$$H_0: \mu_1 = \mu_2$$

 $H_a: \mu_1 \neq \mu_2$
Keterangan:

 μ_1 : Kemampuan penalaran matematika dalam menyelesaikan masalah pada siswa bertipe kepribadian ekstrovert

 μ_2 : Kemampuan penalaran matematika dalam menyelesaikan masalah pada siswa bertipe kepribadian introvert

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

$$= \sqrt{\frac{(14 - 1)118,1484 + (14 - 1)46,2981}{28 - 2}}$$

$$= \sqrt{\frac{2137,8045}{26}}$$

$$= 9,0677$$

$$t_{hitung} = \frac{x_1 - x_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$= \frac{82,75 - 75,4286}{9,0677 \sqrt{\frac{1}{14} + \frac{1}{14}}}$$

$$= \frac{7,3214}{3,4273}$$

$$= 2,1362$$
Langkah ke tiga: Menentukan nilai db

$$db = n_1 + n_2 - 2$$

$$= 14 + 14 - 2$$

$$= 26$$
Langkah ke empat: Menentukan $t_{tabel} = t_{(db,\alpha)}$

$$t_{tabel} = t_{(db,\alpha)}$$

$$= t_{(26;0,05)}$$

$$= 2,0555$$

Langkah ke lima: Menentukan kriteria kesimpulan

Karena $t_{\rm hitung} > t_{\rm tabel}$, maka terima H_a , sehingga dapat disimpulkan bahwa ada perbedaan yang signifikan kemampuan penalaran matematika dalam memecahkan masalah antara siswa bertipe kepribadian ekstrovert dan siswa bertipe kepribadian introvert.

C. Pembahasan

Agar kesimpulan penelitian ini dapat valid, maka peneliti mengadaptasi indikator kemampuan penalaran matematika dan tahap pemecahan masalah dari penelitian sebelumnya yang relevan.

Indikator tersebut digunakan untuk mengetahui kemampuan penalaran matematika dalam memecahkan masalah siswa bertipe kepribadian ekstrovert maupun siswa bertipe kepribadian introvert.

Kesimpulan yang diperoleh dalam penelitian ini relevan dengan hipotesis penelitian yang menyatakan ada perbedaan yang signifikan kemampuan penalaran matematika dalam memecahkan masalah antara siswa bertipe kepribadian ekstrovert dan siswa bertipe kepribadian introvert. Setiap orang tentunya memiliki kemampuan yang berbeda-beda dalam memecahkan masalah, begitu juga siswa bertipe kepribadian ekstrovert maupun siswa bertipe kepribadian introvert juga memiliki perbedaan kemampuan penalaran matematika dalam memecahkan masalah.

Berdasarkan analisis skor kemampuan penalaran matematika dalam memecahkan masalah, siswa bertipe kepribadian introvert memiliki rata-rata skor yang lebih tinggi dibandingkan dengan siswa bertipe kepribadian ekstrovert. Hal ini dipengaruhi oleh karakteristik siswa dalam memproses informasi dan pengerjaan soal yang diberikan. Siswa introvert cenderung lebih teliti, runtut, dan sistematis dalam menyelesaikan permasalahan dibandingkan dengan siswa ekstrovert. Hal tersebut dapat diamati dengan membandingkan hasil tes kemampuan penalaran matematika siswa. Namun. diamati dari waktunya siswa ekstrovert mampu menyelesaikan soal lebih cepat dibandingkan siswa introvert. Kesimpulan tersebut didapat dengan membandingan rata-rata waktu yang dibutuhkan untuk menyelesaikan soal antara siswa ekstrovert dan siswa introvert. Pada dasarnya kesalahan yang dilakukan siswa ekstrovert adalah kurang teliti dalam menyelidiki permasalahan yang diberikan dan adanya informasi yang diabaikan sehingga mengakibatkan perhitungan kurang tepat. Hal tersebut dikarenakan karakter siswa ekstrovert cenderung kurang berhati-hati dalam pengambilan keputusan dan kurang pertimbangan dibandingkan siswa introvert.

Memang pada umumnya setiap orang biasanya memiliki sisi kepribadian ekstrovert maupun introvert namun ada kecenderungan untuk dominan pada salah satu tipe kepribadian tersebut. Pada dasarnya kepribadian yang berbeda membuat siswa memiliki cara tersendiri dalam bernalar. Hal tersebut dikarenakan gaya belajar yang tidak sama tergantung dari karakter masingmasing siswa. Oleh karena itu, guru diharapkan mampu merancang

pembelajaran yang dapat meningkatkan kemampuan penalaran matematika siswa dengan melihat kepribadian siswa tersebut.

