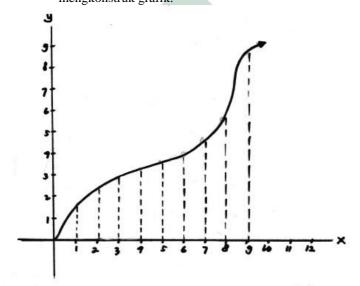
BAB IV HASIL PENELITIAN

Pada bab ini akan disajikan deskripsi dan analisis data hasil penelitian untuk mengetahui penalaran kovariasional siswa dalam mengkonstruk grafik fungsi dibedakan dari gaya belajar 4MAT System di MAN Babat Lamongan. Subjek penelitian dipilih menggunakan hasil angket gaya belajar 4MAT System yang dikembangkan oleh Marlene D. Lefever. Dipilih empat subjek penelitian, satu siswa bergaya belajar innovative learner yang diwakili oleh subjek S₁, satu siswa bergaya belajar analytic learner yang diwakili oleh subjek S₂, satu siswa bergaya belajar common sense learner yang diwakili oleh subjek S₃, satu siswa bergaya belajar dynamic learner yang diwakili oleh subjek S₄.

Sedangkan kemampuan penalaran kovariasional siswa dalam mengkonstruk grafik fungsi diperoleh melalui lembar tugas kovariasi dan diperkuat dengan wawancara sebagai berikut:



Bayangkan botol di atas tersebut diisi dengan air.

- a) Gambarkan sebuah grafik ketinggian air dalam botol terhadap banyaknya air yang dimasukkan ke dalam botol
- b) Mengapa anda menggambarkan seperti itu?

Berikut akan disajikan jawaban tertulis subjek dan data hasil wawancara tentang penalaran kovariasional siswa dalam mengkonstruk grafik fungsi:

- A. Deskripsi dan Analisis Data Penalaran Kovariasional Siswa Bergaya Belajar *Innovative Learner* (S_1) dalam Mengkonstruksi Grafik Fungsi
 - 1. Deskripsi dan Analisis Data Hasil Lembar Tugas Kovariasi dan Wawancara Subjek \mathbf{S}_1
 - a. Deskripsi Data Subjek S₁
 Berikut adalah hasil jawaban tertulis subjek S₁ dalam mengkonstruk grafik:

ketinggian air Anlam botol terhadap banyak air itu tidak stabil (bergelom bang)

Gambar 4.1 Jawaban Tertulis Subjek S₁

Berdasarkan Gambar 4.1, terlihat hasil konstruksi grafik subjek S_1 . Subjek S_1 memberikan alasan bahwa ketinggian air terhadap banyaknya air dalam botol itu tidak stabil, sehingga subjek S_1 menggambarkan grafik yang bergelombang. Untuk mengungkapkan lebih dalam tentang penalaran kovariasional

subjek S_1 dalam mengkonstruk grafik fungsi dilakukan wawancara. Berikut kutipan hasil wawancara dengan subjek S_1 :

P_{1,1,1} : Coba kamu jelaskan, apa yang kamu pikirkan ketika diberi masalah seperti ini!

S_{1.1.1} : saya memikirkan proses mengisi air ke dalam botol bahwa semakin banyak air dimasukkan maka tinggi air dalam botol meningkat, dan alasan saya mengapa menggambar grafiknya seperti ini karena terkadang untuk mengisi air itu kecepatannya tidak stabil sehingga saya menggambarkan grafiknya bergelombang.

P_{1.1.2} : Variabel apa saja yang terdapat pada soal tersebut?

 $S_{1.1.2}$: Volume (banyaknya air) dan ketinggian air $P_{1.1.3}$: Jelaskan sumbu-sumbu yang ada pada grafik!

S_{1.1.3} : Sumbu x disini adalah volume dan sumbu y adalah ketinggian

P_{1.1.4} : Kenapa begitu? Apa alasanmu?

S_{1.1.4}: karena identik sih. Karena ketika saya menjumpai soal-soal fisika seperti jarak dan waktu itu jarak diletakkan pada sb-x dan waktu diletakkan pada sb-y, sama seperti volume dan ketinggian. Jadi saya menyamakan volume dengan waktu dan tinggi dengan jarak.

P_{1.1.5}: Apakah variabel-variabel tersebut saling bergantung satu sama lain?

 $S_{1.1.5}$: iya

P_{1.1.6} : Mengapa begitu?

S_{1.1.6}: Karena ketika bertambahnya volume air dalam botol tersebut maka ketinggiannya juga akan meningkat

P_{1.1.7}: Ketika air dimasukkan ke dalam botol, apakah ada perubahan ketinggian air dalam botol?

 $S_{1,1,7}$: Ada

 $P_{1.1.8}$: Bagaimana perubahan ketinggian air nya?

S_{1.1.8} : Semakin banyak air yang dimasukkan maka ketinggiannya akan semakin meningkat sampai ke botol atas.

P_{1,1,9}: Mengapa kamu membuat titik-titik koordinat ini?

S_{1,1,9} : Biar mudah saja kak gambarnya

Subjek S_1 mengawali mengerjakan dengan memahami soal yang berikan kemudian subjek S_1 menanyakan soal karena subjek S_1 belum memahami soal tersebut.

Selanjutnya peneliti menjelaskan kepada subjek S₁ apa maksud dari soal tersebut. Setelah mendengarkan penjelasan peneliti, subjek S₁ terlihat sudah mengerti apa yang harus subjek lakukan. Kemudian subjek S1 mulai mengerjakan soal dengan membuat sumbu horizontal dan sumbu vertikal selanjutnya subjek S₁ membuat angka-angka pada sumbu setelah itu subjek memberi label sumbu vertikal dengan y dan sumbu horizontal dengan x. Subjek S₁ tidak memberi label sumbu vertikal dengan ketinggian dan sumbu horizontal dengan volume, tetapi dalam wawancara S_{1.1.3} subjek S₁ menunjukkan bahwa sumbu vertikal adalah ketinggian dan sumbu horizontal adalah volume. Kemudian subjek S₁ menandai gambar botol pada soal dengan mencoret-coret bagian bawah,tengah dan atas. Selanjutnya subjek S₁ menggambar arah grafik, dengan arah grafiknya meningkat ke atas. Setelah itu subjek S₁ menghubungkan angka-angka pada sumbu x ke arah grafik dengan membuat garis putus-putus. Setelah itu subjek S₁ memberikan alasan terhadap gambar yang telah dibuat.

b. Analisis Data Subjek S₁

Berikut ini analisis penalaran kovariasional subjek S₁ dalam mengkonstruk grafik fungsi berdasarkan deskripsi data yang ada.

1. Aksi Mental Koordinasi Awal (MA1)

Subjek S_1 telah menunjukkan bahwa subjek mampu mengkoordinasikan nilai suatu variabel terhadap perubahan variabel lain. Hal ini dapat diketahui ketika S_1 memberi label pada kedua sumbu dan sesuai dengan pernyataan $S_{1.1.3}$ seperti berikut:

"sumbu x disini adalah volume dan sumbu y adalah ketinggian"

Subjek menyadari adanya perubahan ketinggian ketika memperhatikan perubahan volume yang dapat diidentifikasi dari ucapan subjek dalam pernyataan $S_{1.1.8}$ seperti berikut:

"semakin banyak air dimasukkan maka tinggi air dalam botol meningkat"

2. Aksi Mental Koordinasi Arah Perubahan (MA2)

Subjek S₁ menunjukkan perilaku dan ucapan yang melibatkan aksi mental koordinasi arah perubahan tinggi ketika memperhatikan perubahan volume. Sebagai contoh dalam wawancara, subjek mengucapkan (S_{1.1.6}) "...ketika bertambahnya volume air dalam botol tersebut maka ketinggiannya juga akan meningkat".

Grafik pada gambar 4.1 yang dihasilkan oleh Subjek S₁ juga menunjukkan koordinasi arah perubahan yang sesuai dengan ucapan subjek. Subjek menunjukkan arah perubahan keatas ketika terjadi perubahan dari setiap variabel awal.

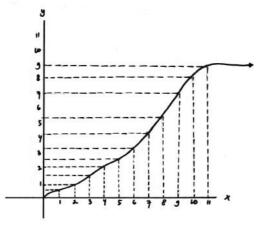
3. Aksi Mental Koordinasi Besar Perubahan (MA3)

Subjek S₁ tidak dapat menunjukkan perilaku yang mendukung aksi mental mengkoordinasi besar perubahan pada variabel terikat ketika membayangkan perubahan pada variabel bebas. Subjek membuat titiktitik koordinat pada grafik hanya untuk memudahkan ketika menggambar grafik, seperti yang terungkap pada kutipan wawancara berikut:

 $P_{1.1.9}$: mengapa kamu membuat titik-titik koordinat ini? $S_{1.1.9}$: biar mudah saja kak gambarnya.

4. Aksi Mental Koordinasi Laju Perubahan (MA4)

Subjek S₁ tidak memperlihatkan perilaku maupun pengucapan yang mendukung aksi mental mengkoordinasikan laju perubahan. Subjek tidak mengetahui perbandingan besarnya perubahan rata-rata ketinggian dengan perubahan volume karena subjek tidak dapat menunjukkan aksi mental koordinasi besarnya perubahan (MA3).


5. Aksi Mental Koordinasi Perubahan Laju Sesaat (MA5)

Subjek S_1 tidak menunjukkan perilaku maupun pengucapan yang mendukung aksi mental koordinasi perubahan laju sesaat. Hal ini sejalan dengan teori yang sudah ada bahwa seseorang yang tidak melakukan aksi mental koordinasi besar perubahan (MA3) dan

koordinasi laju perubahan (MA4) tidak akan melakukan aksi mental koordinasi perubahan laju sesaat (MA5).

- B. Deskripsi dan Analisis Data Penalaran Kovariasional Siswa Bergaya Belajar *Analytic Learner* (S₂) dalam Mengkonstruksi Grafik Fungsi
 - 1. Deskripsi dan Analisis Data Hasil Lembar Tugas Kovariasi dan Wawancara Subjek S₂
 - a. Deskripsi Data

Berikut adalah hasil jawaban tertulis subjek S_2 dalam mengkonstruk grafik:

Alasan :

x. Volume air

y. Ketinggian au

Alasan, terbentuknya grafik di atas karena ketinggian air mula-mula tidak rata (bergelombang) di karenakan Volume air yang berada di botol berpengaruh terhadap ketinggian air yang baru di masukkan jadi Menghasilkan grafik yang bergelombang. Pada saat ketinggian air berada di ujung botol yang Volume nya mulai sedikit (manyempit) Maka grafik dir mulai rata dan botol mulai terisi penuh.

Gambar 4.2 Jawaban Tertulis Subjek S₂

Berdasarkan Gambar 4.2, terlihat hasil konstruksi grafik subjek S_2 . Alasan mengapa subjek S_2 menggambar seperti itu adalah volume air dalam botol berpengaruh terhadap ketinggian air yang baru dimasukkan dalam botol, sehingga subjek S_2 menggambarkan grafik yang bergelombang. Gambar tersebut juga menunjukkan grafik ketinggian air pada ujung botol, dan pada ujung botol grafiknya mulai rata atau linear dikarenakan volumenya sedikit (menyempit). Untuk mengungkapkan lebih dalam tentang penalaran kovariasional subjek S_2 dalam mengkonstruk grafik fungsi dilakukan wawancara. Berikut kutipan hasil wawancara dengan subjek S_2 :

P_{2.1.1} : Coba kamu jelaskan, apa yang kamu pikirkan ketika diberi masalah seperti ini!

S2.1.1 Pertama saya berpikir ada botol kosong kemudian disuruh mengisi botol sampai penuh dan kita juga kan disuruh menggambarkan grafik dari botol tersebut, didalam fikiran saya pertama-tama botolnya kan kosong kalo diisi air pada bagian bawah botol sampai menuju leher botol maka grafiknya bergelombang atau tidak bisa rata karena banyaknya volume udara dalam botol, terus semakin lama ketika air mencapai diujung botol maka volumenya menyempit atau sedikit sehingga grafiknya mulai lurus atau rata

P_{2,2,2} : Variabel apa saja yang terdapat pada soal?

 $S_{2,2,2}$: Volume air dan ketinggian air.

P_{2,2,3}: Pada grafik kan terdapat sb-x dan sb-y, lah dari masalah botol tersebut kamu menamai sb-x itu apa dan sb-y itu apa?

S_{2,2,3} : Kalo sb-x itu volume airnya dan sb-y itu ketinggian airnya

P_{2,2,4} : Kenapa begitu? Apa alasanmu?

S_{2,2,4} : Soalnya kan disini volume air dan ketinggian saling berpengaruh. Kenapa sb-y saya beri nama ketinggian karena disini yang lebih berperan adalah ketinggian dan volume itu juga termasuk dari ketinggiannya itu.

P_{2.2.5} : Apakah ada hubungan dari kedua variabel ini?

S225 : Ada

 $P_{2,2,6}$: Apakah kedua variabel ini saling bergantung satu sama

lain?

 $S_{2.2.6}$: Menurut saya saling bergantung

 $P_{2,2,7}$: Kenapa?

S_{2,2,7} : Ya kalo misalnya volume sedikit maka ketinggiannya gak terlalu tinggi, kalo misalkan volume nya banyak kan ketinggiannya juga semakin tinggi juga

P_{2,2,8} : Coba perhatikan di leher botol itu, adakah perubahan peningkatan dari botol bagian bawah sampai ke leher botol?

S_{2.2.8} : Ada, karena bentuk antara botol bagian bawah dan kepala botol berbeda sehingga ketika mencapai leher botol volume airnya menjadi stabil

P_{2,2,9}: Bagaimana kecepatan volume air ketika mencapai leher botol, apakah kecepatan air meningkat lebih cepat atau lebih lambat

 $S_{2.2.9}$: Lebih cepat $P_{2.2.10}$: Mengapa?

S_{2,2,10}: Karena luas permukaannya semakin menyempit dan mempengaruhi kecepatan volume air sehingga kecepatan air meningkat keatas lebih cepat

P_{2,2,11}: Mengapa kamu membuat titik-titik koordinat tersebut? S_{2,2,11}: Supaya besarnya perubahan volume air itu bisa diketahui

P_{2,2,12}: Bagaimana kamu bisa mengetahui letak titik-titik koordinat

S_{2,2,12} : saya membuatnya dengan mengira-ngira

P_{2.2.13} : Menurutmu itu sudah benar?

 $S_{2.2.13}$: Belum mbk

P_{2,2,14} : Menurutmu bagaimana cara membuat letak titik-titik koordinat dengan benar?

 $S_{2.2.14}$: Saya bingung mbk

Subjek S₂ mengawali mengerjakan dengan memahami soal yang berikan, kemudian subjek S₂ menanyakan maksud soal karena subjek S2 belum memahami soal tersebut. Selanjutnya peneliti menjelaskan kepada subjek S₂ apa maksud dari soal tersebut. Setelah mendengarkan penjelasan peneliti, subjek S2 terlihat sudah mengerti apa yang harus subjek lakukan. Kemudian subjek S2 mulai mengerjakan soal dengan membuat sumbu horizontal dan sumbu vertikal selanjutnya subjek S₂ membuat angka-angka pada sumbu setelah itu subjek memberi label sumbu vertikal dengan y dan sumbu horizontal dengan x. Subjek S2 memberi keterangan sumbu x menjelaskan volume air dan sumbu y menjelaskan ketinggian air. Kemudian subjek S_2 membaca ulang soal dan menandai gambar botol pada soal dengan mencoret-coret bagian bawah,tengah dan atas. Selanjutnya subjek S_2 menggambar arah grafik, dengan arah grafiknya meningkat ke atas. Setelah itu subjek S_1 menghubungkan angka-angka pada sumbu x dan sumbu y ke arah grafik dengan membuat garis putus-putus. Setelah itu subjek S_1 memberikan alasan terhadap gambar yang telah dibuat.

b. Analisis Data Subjek S₂

Berikut ini analisis penalaran kovariasional subjek S_2 dalam mengkonstruk grafik fungsi berdasarkan deskripsi data yang ada.

1. Aksi Mental Koordinasi Awal (MA1)

Subjek S₂ telah menunjukkan bahwa subjek mampu mengkoordinasikan nilai suatu variabel terhadap perubahan variabel lain. Hal ini dapat diketahui ketika S₂ memberi label "x" yang dimaksudkan sebagai volume pada sumbu vertikal dan memberi label "y" pada sumbu horisontal yang ia maksudkan sebagai ketinggian. Hal tersebut dapat diketahui juga dari ucapan subjek S₂ saat wawancara, yaitu:

P_{2,2,2}: pada grafik terdapat sb-x dan sb-y, lah dari masalah botol tersebut kamu menamai sb-x itu apa dan sb-y itu apa?

S2.2.2: kalo sb-x itu volume airnya dan sb-y itu ketinggian airnya

Subjek S₂ juga menyadari adanya perubahan ketinggian ketika memperhatikan perubahan volume yang dapat diidentifikasi dari ucapan subjek pada wawancara S_{2,2,7}

"kalo misalnya volume sedikit maka ketinggiannya gak terlalu tinggi, kalo misalkan volume nya banyak kan ketinggiannya juga semakin tinggi juga"

2. Aksi Mental Koordinasi Arah Perubahan (MA2)

Subjek S_2 menunjukkan perilaku dan pengucapan yang melibatkan aksi mental koordinasi arah perubahan tinggi ketika memperhatikan perubahan volume. Sebagai contoh dalam wawancara, subjek mengucapkan $(S_{2,2,1})$

"....Pertama botolnya kan kosong kalo diisi air pada bagian bawah botol sampai menuju leher botol maka grafiknya bergelombang atau tidak bisa rata karena banyaknya volume udara dalam botol, terus semakin lama ketika air mencapai diujung botol maka volumenya menyempit atau sedikit sehingga grafiknya mulai lurus atau rata".

Grafik pada gambar 4.2 yang dihasilkan oleh subjek S₂ juga menunjukkan koordinasi arah perubahan yang sesuai dengan pengucapan subjek. Subjek menunjukkan arah perubahan ke atas ketika terjadi perubahan dari setiap variabel awal.

3. Aksi Mental Koordinasi Besar Perubahan (MA3)

Subjek S₂ menunjukkan perilaku dan pengucapan yang mendukung aksi mental mengkoordinasi besar perubahan ketinggian ketika memperhatikan perubahan volume. Subjek mengekspresikan kesadaran tentang bagaimana ketinggian berubah ketika mereka menyadari peningkatan banyaknya air. Ekspresi tersebut terungkap dalam ucapan subjek ketika wawancara S_{2,2,7}

"jika volume sedikit maka ketinggiannya gak terlalu tinggi, kalo misalkan volume nya banyak kan ketinggiannya akan meningkat"

Subjek membuat titik-titik koordinat pada grafik dengan menetapkan interval-interval pada sumbu vertikal dan mengkoordinasikannya dengan interval yang disesuaikan pada sumbu horisontal. Tetapi subjek tidak yakin ketika membuat titik-titik koordinat tersebut, karena subjek membuatnya dengan perkiraan, hal tersebut dapat diketahui dari kutipan wawancara berikut:

P_{2,2,11}: Mengapa kamu membuat titik-titik koordinat tersebut?

S_{2,2,11}: supaya besarnya perubahan volume air itu bisa diketahui

P_{2,2,12}: bagaimana kamu bisa mengetahui letak titik-titik koordinat itu?

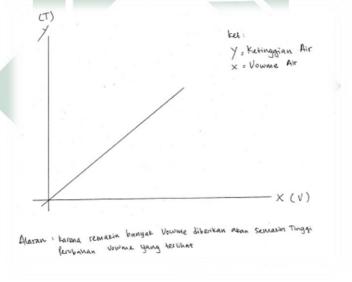
S_{2,2,12} : saya membuatnya dengan mengirangira

 $P_{2.2.13}$: menurutmu itu sudah benar?

 $S_{2.2.13}$: Belum mbk

P_{2,2,14}: menurutmu bagaimana cara membuat letak titik-titik koordinat dengan benar?

 $S_{2.2.14}$: Saya bingung mbk


Aksi Mental Koordinasi Laju Perubahan (MA4)
Subjek S₂ tidak memperlihatkan perilaku
maupun pengucapan yang mendukung aksi
mental mengkoordinasikan laju perubahan. Siswa
tidak mengetahui perbandingan besarnya
perubahan rata-rata ketinggian dengan perubahan
volume karena subjek tidak dapat menunjukkan
aksi mental koordinasi besarnya perubahan
(MA3).

5. Aksi Mental Koordinasi Perubahan Laju Sesaat (MA5)

Subjek S_2 tidak menunjukkan perilaku maupun pengucapan yang mendukung aksi mental koordinasi perubahan laju sesaat. Hal ini sejalan dengan teori yang sudah ada bahwa seseorang yang tidak melakukan aksi mental koordinasi laju perubahan (MA4) tidak akan

melakukan aksi mental koordinasi perubahan laju sesaat (MA5).

- C. Deskripsi dan Analisis Data Penalaran Kovariasional Siswa Bergaya Belajar *Common Sense Learner* (S₃) dalam Mengkonstruksi Grafik Fungsi
 - 1. Deskripsi dan Analisis Data Hasil Lembar Tugas Kovariasi dan Wawancara Subjek S₃
 - a. Deskripsi Data
 Berikut adalah hasil jawaban tertulis subjek S₃ dalam mengkonstruk grafik:

Gambar 4.3 Jawaban Tertulis Subjek S₃

Berdasarkan Gambar 4.3, terlihat hasil konstruksi grafik subjek S_3 . Subjek S_3 memberikan alasan mengapa subjek menggambar seperti itu karena semakin banyak volume (banyak air) diberikan maka akan semakin tinggi perubahan volume yang terlihat. Untuk mengungkapkan lebih dalam tentang penalaran

kovariasional subjek S_3 dalam mengkonstruk grafik fungsi dilakukan wawancara. Berikut kutipan hasil wawancara dengan subjek S_3 :

P_{3,3,1} : Coba kamu jelaskan, apa yang kamu pikirkan ketika diberi masalah seperti ini!

S_{3,3,1}: Saya berpikir dengan nalar, realistisnya ketika botol diisi dengan air yang banyak maka volume nya bertambah dan tingginya juga bertambah. Volume airnya juga dipengaruhi oleh tekanan dalam botol

P_{3,3,2} : nah, kan situ disuruh membuat grafik, kenapa grafiknya seperti itu?

S_{3,3,2} : iya, karena jika volume ditambah maka ketinggian juga bertambah dan kecepatannya stabil sehingga grafiknya lurus.

P_{3,3,3} padahal bentuk dari botol bawah sampai leher botol kan beda, apakah kecepatannya tetap stabil atau tidak?

 $S_{3,3,3}$: tidak

P_{3,3,4} apakah a<mark>da</mark> perubahan kecepatan ketika mencapai leher

S_{3,3,4} : ada, permukaannya kan beda

P_{3,3,5}: jadi gimana menurutmu gambar grafiknya?apakah lurus? S_{3,3,5}: tidak, gambarnya ini boleh diganti atau tidak mbk hehe

P_{3,3,6}: Tidak usah, dari sini kamu bisa menyadari bahwa ketika air mencapai leher botol maka terjadi perubahan kecepatan sehingga kecepatannya tidak stabil dan gambar grafiknya tidak lurus.

Kemudian, tadi awal ketika saya tanya tentang apa yang anda pikirkan ketika mendapat soal seperti ini, kamu bilang tentang volume dipengaruhi oleh tekanan dalam botol. Itu maksudnya apa?

S_{3,3,6} : jadi, tekanan udara dalam botol mempengaruhi peningkatan volume air sehingga saya menggambar grafiknya lurus seperti itu

 $P_{3.3.7}$: variabel apa saja yang terdapat pada soal?

 $S_{3.3.7}$: volume dan ketinggian

P_{3,3,8} : bagaimana kamu menyimbolkan sumbu-sumbu pada grafik tersebut?

 $S_{3,3,8}$: saya menyimbolkan sb-x dengan volume dan sb-y dengan tinggi

P_{3,3,9} : mengapa kamu menyimbolkan sb-x dengan volume dan sb-y dengan tinggi?

S_{3,3,9} : karena kebanyakan kalo volume itu berada dibawah (sb-x) dan tinggi itu diatas (sb-y). dan juga dari grafik-grafik yang pernah saya lihat.

P_{3.3.10} : tidak ada alasan lain?

 S_{3310} : tidak ada

P_{3,3,11}: apakah variabel-variabel dari grafik itu saling bergantung

S_{3,3,11} : tidak, karena volume bisa dicari sendiri dan ketinggian juga bisa dicari sendiri

P_{3,3,12}: kalau dalam grafik ini apakah saling bergantung? Jika volumenya bertambah maka otomatis kan tingginya juga bertambah

 $S_{3.3.12}$: jadi saling bergantung ya

P_{3,3,13}: iya. Apakah ada perubahan ketinggian air dalam botol?

 $S_{3.3.13}$: Ada

P_{3.3.14} : bagaimana pe<mark>rub</mark>ahan ketinggian air?

P_{3,3,14} : semakin banyak air yang masuk maka semakin meningkat ketinggiannya.

Subjek S₃ mengawali mengerjakan dengan memahami soal yang berikan, kemudian subjek S3 menanyakan maksud soal karena subjek S3 belum memahami soal tersebut. Selanjutnya peneliti menjelaskan kepada subjek S₃ apa maksud dari soal tersebut. Setelah mendengarkan penjelasan peneliti, subjek S₃ terlihat sudah mengerti apa yang harus subjek S₃ lakukan. Kemudian subjek S3 mulai mengerjakan soal dengan membuat sumbu horizontal dan sumbu vertikal. Setelah itu subjek S3 memberi keterangan sumbu x menjelaskan volume air dan sumbu y menjelaskan ketinggian air. Kemudian subjek S₃ membaca ulang soal dan menandai gambar botol pada soal dengan mencoret-coret bagian-bagian gambar botol. Selanjutnya subjek S3 menggambar arah grafik, dengan arah grafiknya meningkat lurus ke atas. Setelah itu subjek S₃ memberikan alasan terhadap gambar yang telah dibuat.

b. Analisis Data Subjek S₃

Berikut ini analisis penalaran kovariasional subjek S_3 dalam mengkonstruk grafik fungsi berdasarkan deskripsi data yang ada.

1. Aksi Mental Koordinasi Awal (MA1)

Subjek S₃ telah menunjukkan bahwa subjek mampu mengkoordinasikan nilai suatu variabel terhadap perubahan variabel lain. Hal ini dapat diketahui ketika S₃ memberi label "x" yang di maksudkan sebagai volume pada sumbu vertikal dan memberi label "y" pada sumbu horisontal yang ia maksudkan sebagai ketinggian. Hal tersebut dapat diketahui juga dari pengucapan subjek saat wawancara, sebagai berikut:

P_{3,3,8}: bagaimana kamu menyimbolkan sumbu-sumbu p<mark>ada g</mark>rafik te<mark>rseb</mark>ut?

S_{3,3,8} : saya menyimbolkan sb-x dengan volume dan sb-y dengan tinggi

Subjek juga menyadari adanya perubahan ketinggian ketika memperhatikan perubahan volume yang dapat diidentifikasi dari ucapan subjek seperti berikut (S_{3,3,1)}.

"...ketika botol diisi dengan air yang banyak maka volume nya bertambah dan tingginya juga bertambah "

Akan tetapi ketika proses wawancara, subjek tidak mengetahui hubungan antar dua variabel tersebut, hal itu terdapat pada kutipan wawancara berikut:

P_{3,3,11}: apakah variabel-variabel dari grafik itu saling bergantung tidak?

S_{3,3,11} : tidak, karena volume bisa dicari sendiri dan ketinggian juga bisa dicari sendiri

P_{3,3,12} : kalau dalam grafik ini apakah saling bergantung? Jika volumenya bertambah maka otomatis kan tingginya juga bertambah

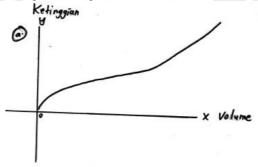
 $S_{3.3.12}$: jadi saling bergantung ya

2. Aksi Mental Koordinasi Arah Perubahan (MA2)

Subjek S_3 menunjukkan perilaku dan pengucapan yang melibatkan aksi mental koordinasi arah perubahan volume ketika memperhatikan perubahan tinggi. Sebagai contoh, subjek menyatakan melalui pernyataan wawancara berikut $(S_{3,3,2})$

"... karena jika volume ditambah maka ketinggian juga bertambah. Dan kecepatannya stabil sehingga grafiknya lurus"

Subjek juga menunjukkan perilaku yang mendukung aksi mental koordinasi arah perubahan, yaitu subjek mengkonstruksi suatu garis lurus yang meningkat yang ada pada gambar 4.3.


- 3. Aksi Mental Koordinasi Besar Perubahan (MA3) Subjek S₃ tidak memperlihatkan perilaku maupun pengucapan yang mendukung aksi mental koordinasi besar perubahan variabel terikat berdasarkan perubahan yang seragam pada variabel bebas. Subjek tidak menunjukkan perilaku menempatkan tanda pada sisi botol. Tidak indikasi untuk ada menyatakan pengetahuan subjek tentang besarnya perubahan ketinggian ketika membayangkan perubahan volume.
- 4. Aksi Mental Koordinasi Laju Perubahan (MA4)
 Subjek S3 tidak memperlihatkan perilaku
 maupun pengucapan yang mendukung aksi
 mental mengkoordinasikan laju perubahan. Siswa
 tidak mengetahui perbandingan besarnya
 perubahan rata-rata ketinggian dengan perubahan
 volume karena subjek tidak dapat menunjukkan
 aksi mental koordinasi besarnya perubahan
 (MA3).

Aksi Mental Koordinasi Perubahan Laju Sesaat (MA5)

Subjek S₃ tidak menunjukkan perilaku maupun pengucapan yang mendukung aksi mental koordinasi perubahan laju sesaat. Hal ini sejalan dengan teori yang sudah ada bahwa seseorang yang tidak melakukan aksi mental koordinasi besar perubahan (MA3) dan koordinasi laju perubahan (MA4) tidak akan melakukan aksi mental koordinasi perubahan laju sesaat (MA5).

- D. Deskripsi dan Analisis Data Penalaran Kovariasional Siswa Bergaya Belajar *Dynamic Learner* (S₄) dalam Mengkonstruksi Grafik Fungsi
 - 1. Deskripsi dan Analisis Data Hasil Lembar Tugas Kovariasi dan Wawancara Subjek S₄
 - a. Deskrips<mark>i D</mark>ata

Berikut adalah hasil jawaban tertulis subjek S₄ dalam mengkonstruk grafik:

b Karna pada saal mengisi air Tika air makin tinggi atau Ketinggian nya bertambah maka semakin Besar Juga Volume Air pada botol tersebut

> Gambar 4.4 Jawaban Tertulis Subjek S₄

Berdasarkan Gambar 4.4, terlihat hasil konstruksi grafik subjek S_4 . Alasan mengapa subjek S_4 menggambarkan grafik seperti itu adalah pada saat mengisi air, jika air semakin banyak maka ketinggiannya semakin bertambah. Untuk mengungkapkan lebih dalam tentang penalaran kovariasional subjek S_4 dalam mengkonstruk grafik fungsi dilakukan wawancara. Berikut kutipan hasil wawancara dengan subjek S_4 :

P_{4,4,1} : Coba kamu jelaskan, apa yang kamu pikirkan ketika diberi masalah seperti ini!

Saya berpikir jika botol diisi dengan air, semakin banyak air maka semakin besar volume air dan ketinggiannya juga bertambah

P_{4.4.2} : Variabel apa saja yang terdapat pada soal tersebut?

S_{4,4,2} : Ketinggian dan volume

P_{4.4.3} : Jelaskan sumbu-sumbu yang ada pada grafik!

S_{4.4.3} : Sumbu x disini adalah volume dan sumbu y adalah ketinggian

P_{4.4.4} : Coba jelaskan mengapa kamu menyimbolkan sb-x dengan volume dan sb-y dengan tinggi?

S_{4.4.4} : Semakin men<mark>ingkat ketinggi</mark>annya maka volumenya akan semakin naik, sehingga grafiknya mengarah keatas. Maka saya menempatkan volume di sb-x agar grafiknya bisa keatas.

P_{4.4.5} : Apakah variabel-variabel dari grafik itu saling bergantung tidak?

 $S_{4.4.5}$: Iya

P_{4.4.6} : Kenapa?

 $S_{4.4.6}$: Karena semakin besar volume air maka semakin tinggi airnya

 $P_{4.4.7}$: Apakah ada perubahan ketinggian air dalam botol?

S_{4.4.7} : Ada

 $P_{4.4.8} \quad : \quad Bagaimana \ perubahan \ ketinggian \ airnya?$

S_{4.4.8} : Semakin banyak air yang masuk maka semakin meningkat ketinggiannya.

 $Subjek \quad S_4 \quad mengawali \quad mengerjakan \quad dengan \\ memahami \quad soal \quad yang \quad berikan, \quad kemudian \quad subjek \quad S_4$

menanyakan maksud soal karena subjek S₄ belum memahami soal tersebut. Selanjutnya peneliti menjelaskan kepada subjek S₄ apa maksud dari soal tersebut. Setelah mendengarkan penjelasan peneliti, subjek S₄ terlihat sudah mengerti apa yang harus subjek lakukan. Kemudian subjek S₄ mulai mengerjakan soal dengan membuat sumbu horizontal dan sumbu vertikal. Selanjutnya subjek S₄ memberi keterangan label disampingnya sumbu x adalah volume dan label di atas sumbu y adalah ketinggian. Kemudian subjek S₄ membaca ulang soal, setelah itu subjek S₄ menggambar arah grafik, dengan arah grafiknya meningkat ke atas. Selanjutnya subjek S₄ memberikan alasan terhadap gambar yang telah dibuat.

b. Analisis Data Subjek S₄

Berikut ini analisis penalaran kovariasional subjek S₄ dalam mengkonstruk grafik fungsi berdasarkan deskripsi data yang ada.

1. Aksi Mental Koordinasi Awal (MA1)

Subjek S₄ telah menunjukkan bahwa subjek mampu mengkoordinasikan nilai suatu variabel terhadap perubahan variabel lain. Hal ini dapat diketahui ketika S₁ memberi label pada kedua sumbu dan sesuai dengan pernyataan S_{4.4.3} seperti berikut:

"sumbu x disini adalah volume dan sumbu y adalah ketinggian"

Subjek S_4 menyadari adanya perubahan ketinggian ketika memperhatikan perubahan volume yang dapat diidentifikasi dari ucapan subjek pada kutipan wawancara $S_{4,4,1}$.

"...semakin banyak air maka semakin besar volume air dan ketinggiannya juga bertambah"

2. Aksi Mental Koordinasi Arah Perubahan (MA2)

Subjek S_4 menunjukkan perilaku dan ucapan yang melibatkan aksi mental koordinasi arah perubahan volume ketika memperhatikan perubahan tinggi. Hal ini dapat diketahui dari ucapan subjek dalam kutipan wawancara $S_{4,4,4}$.

"Semakin meningkat ketinggiannya maka volumenya akan semakin naik, sehingga grafiknya mengarah keatas"

Gambar grafik 4.4 yang dihasilkan oleh S₄ juga menunjukkan koordinasi arah perubahan yang sesuai dengan ucapan subjek, karena terlihat bahwa grafiknya meningkat keatas sesuai dengan pernyataan Subjek S₄.

3. Aksi Mental Koordinasi Besar Perubahan (MA3)

Subjek S4 tidak dapat menunjukkan perilaku yang mendukung aksi mental mengkoordinasi besar perubahan pada variabel ketinggian ketika membayangkan perubahan pada variabel volume. Subjek S4 juga tidak menunjukkan indikasi pengetahuan subjek tentang besar perubahan volume dan ketinggian. Dari pernyataan subjek S4 ketika wawancara terdapat beberapa indikasi yang dapat mendukung aksi mental besar perubahan, tetapi pernyataan tersebut kurang kuat untuk dijadikan dasar mendukung aksi mental besar perubahan. Hal itu terdapat pada kutipan wawancara berikut:

 $P_{4,4,7}$: apakah ada perubahan ketinggian air dalam botol?

 $S_{4,4,7}$: Ada

P_{4.4.8}: bagaimana perubahan ketinggian airnya?

S_{4.4.8} : semakin banyak air yang masuk maka semakin meningkat ketinggiannya.

4. Aksi Mental Koordinasi Laju Perubahan (MA4)

Subjek S₄ tidak menunjukkan perilaku yang mendukung aksi mental koordinasi laju perubahan (MA4). Subjek tidak menunjukkan perilaku usaha membuat segmen-segmen garis dengan kemiringan berbeda yang merepresentasikan laju perubahan volume terhadap tinggi pada grafik. Subjek juga tidak menunjukkan kesadaran tentang laju perubahan ketinggian terhadap volume ketika mereka memperhatikan banyaknya air yang sama. Hal ini menunjukkan bahwa subjek tidak dapat mencapai kesimpulan karena data yang ia miliki tidak didukung oleh evaluasi terhadap besar perubahan (MA3).

Aksi Mental Koordinasi Perubahan Laju Sesaat (MA5)

Subjek S₄ tidak menunjukkan perilaku maupun pengucapan yang mendukung aksi mental koordinasi perubahan laju sesaat. Hal ini sejalan dengan teori yang sudah ada bahwa seseorang yang tidak melakukan aksi mental koordinasi besar perubahan (MA3) dan koordinasi laju perubahan (MA4) tidak akan melakukan aksi mental koordinasi perubahan laju sesaat (MA5).

