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ABSTRAK

KLASIFIKASI PENYAKIT ALZHEIMER MENGGUNAKAN METODE

HYBRID INCEPTION V3-RELM

Alzheimer merupakan penyebab utama demensia yang ditandai oleh
kerusakan sel saraf pada area otak yang berperan dalam fungsi kognitif. Diagnosis
berbasis citra Magnetic Resonance Imaging (MRI) memerlukan analisis yang
akurat dan konsisten, sehingga pendekatan Computer Aided Diagnosis (CAD)
dikembangkan untuk mendukung proses klasifikasi secara otomatis. Penelitian ini
bertujuan untuk menerapkan hyperparameter tuning guna memperoleh kombinasi
parameter terbaik serta mengevaluasi performa optimal model hybrid Inception
v3–Regularized Extreme Learning Machine (RELM) dalam klasifikasi citra MRI
Alzheimer. Metode yang digunakan mengombinasikan Inception v3 sebagai
ekstraktor fitur dan RELM sebagai pengklasifikasi. Evaluasi dilakukan
menggunakan Repeated Stratified K-Fold Cross Validation (5 × 5) dengan variasi
parameter meliputi nilai regularisasi C, fungsi aktivasi, jumlah neuron, dan batch
size. Model dikembangkan untuk mengklasifikasikan enam tingkat kondisi
kognitif, yaitu cognitively normal, subjective memory complaints, early mild
cognitive impairment, mild cognitive impairment, late mild cognitive impairment,
dan Alzheimer’s disease. Hasil pengujian menunjukkan bahwa kombinasi
parameter terbaik diperoleh pada nilai C = 0.01, fungsi aktivasi Swish, 32768
neuron, dan batch size 2048. Konfigurasi tersebut menghasilkan performa
klasifikasi dengan accuracy sebesar 81, 67%, precision 82, 23%, recall 81, 76%,
specificity 96, 23%, dan f1-score 81, 31%. Hasil ini menunjukkan bahwa penerapan
hyperparameter tuning berperan penting dalam menentukan konfigurasi model
yang mampu memberikan performa klasifikasi yang stabil pada model hybrid
Inception v3–RELM.
Kata kunci: Alzheimer’s Disease, CNN, Deep Learning, Inception v3, MRI,
RELM
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ABSTRACT

ALZHEIMER’S DISEASE CLASSIFICATION USING THE HYBRID

INCEPTION V3-RELM METHOD

Alzheimer’s disease is the leading cause of dementia, characterized by
damage to nerve cells in areas of the brain responsible for cognitive function.
Magnetic Resonance Imaging (MRI)-based diagnosis requires accurate and
consistent analysis, which is why the Computer-Aided Diagnosis (CAD) approach
was developed to support the automatic classification process. This research aims
to apply hyperparameter tuning to obtain the best parameter combination and
evaluate the optimal performance of the hybrid Inception v3–Regularized Extreme
Learning Machine (RELM) model in Alzheimer’s MRI image classification. The
method used combines Inception v3 as a feature extractor and RELM as a
classifier. The evaluation was conducted using Repeated Stratified K-Fold Cross
Validation (5 x 5) with parameter variations including the regularization value C,
activation function, number of neurons, and batch size. The model was developed
to classify six levels of cognitive condition, namely cognitively normal, subjective
memory complaints, early mild cognitive impairment, mild cognitive impairment,
late mild cognitive impairment, and Alzheimer’s disease. The test results show that
the best parameter combination is obtained at a value of C = 0.01, the Swish
activation function, 32768 neurons, and a batch size of 2048. This configuration
yields classification performance with an accuracy of 81.67%, precision of
82.23%, recall of 81.76%, specificity of 96.23%, and an f1-score of 81.31%. These
results indicate that the application of hyperparameter tuning plays an important
role in determining the model configuration capable of providing stable
classification performance for the hybrid Inception v3–RELM model.
Keywords: Alzheimer’s Disease, CNN, Deep Learning, Inception v3, MRI,
RELM
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(2013). Regularized extreme learning machine for regression with missing data.

Neurocomput., 102, 45–51.

Yu, Y., Adu, K., Tashi, N., Anokye, P., Wang, X., & Ayidzoe, M. A. (2020). RMAF:

Relu-Memristor-Like Activation Function for Deep Learning. IEEE Access, 8,

72727–72741.

Zhang, R., Zhou, B., Lu, C., & Ma, M. (2022). The performance research of the

data augmentation method for image classification. Mathematical Problems in

Engineering, 2022(1), 2964829.

Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., & Parmar, M. (2024). A

review of convolutional neural networks in computer vision, volume 57. Springer

Netherlands.

Zhao, Y., Xie, K., Zou, Z., & He, J. B. (2020). Intelligent recognition of fatigue and



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

http://digilib.uinsa.ac.id/ http://digilib.uinsa.ac.id/ http://digilib.uinsa.ac.id/  

144

sleepiness based on inceptionv3-lstm via multi-feature fusion. IEEE Access, 8,

144205–144217.

Zhao, Z., Chuah, J. H., Lai, K. W., Chow, C. O., Gochoo, M., Dhanalakshmi,

S., Wang, N., Bao, W., & Wu, X. (2023). Conventional machine learning and

deep learning in Alzheimer’s disease diagnosis using neuroimaging: A review.

Frontiers in Computational Neuroscience, 17.

Zheng, H., Yang, Z., Liu, W., Liang, J., & Li, Y. (2015). Improving deep neural

networks using softplus units. Proceedings of the International Joint Conference

on Neural Networks, 2015-September, 0–3.

Zhong, Z., Jin, L., & Xie, Z. (2015). High performance offline handwritten chinese

character recognition using googlenet and directional feature maps. International

Conference on Document Analysis and Recognition (ICDAR), (pp. 846–850).

Zou, C., Amos-Richards, D., Jagannathan, R., & Kulshreshtha, A. (2024). Effect

of home-based lifestyle interventions on cognition in older adults with mild

cognitive impairment: a systematic review. BMC geriatrics, 24(1), 200.


	0133ecd8930e925b5e28cec83ecbfeaa4326a6f67febc423fe8c936d6cf3285d.pdf
	HALAMAN JUDUL

	0133ecd8930e925b5e28cec83ecbfeaa4326a6f67febc423fe8c936d6cf3285d.pdf
	0133ecd8930e925b5e28cec83ecbfeaa4326a6f67febc423fe8c936d6cf3285d.pdf
	MOTTO
	HALAMAN PERSEMBAHAN
	KATA PENGANTAR
	DAFTAR ISI
	DAFTAR TABEL
	DAFTAR GAMBAR
	ABSTRAK
	ABSTRACT
	PENDAHULUAN
	Latar Belakang Masalah
	Rumusan Masalah
	Tujuan Penelitian
	Manfaat Penelitian
	Batasan Masalah
	Sistematika Penulisan

	TINJAUAN PUSTAKA
	Penyakit Alzheimer
	Cognitively Normal (CN)
	Subjective Memory Complaints (SMC)
	Early Mild Cognitive Impairment (EMCI)
	Mild Cognitive Impairment (MCI)
	Late Mild Cognitive Impairment  (LMCI)
	Alzheimer's Disease (AD)

	Resize
	Image Augmentation
	Convolutional Neural Network (CNN)
	Input Layer
	Convolution Layer
	Batch Normalization Layer
	Rectified Linear Unit (ReLU)
	Pooling Layer
	Concatenation Layer
	Global Average Pooling (GAP) Layer
	Inception v3

	Principal Component Analysis (PCA)
	Repeated Stratified K-Fold Cross Validation (CV) Method
	Regularized Extreme Learning Machine (RELM)
	Training RELM
	Testing RELM

	Confusion Matrix
	Integrasi Keilmuan
	Penyakit dalam Perspektif Islam
	Optimalisasi dalam Perspektif Islam


	METODE PENELITIAN
	Jenis Penelitian
	Jenis dan Sumber Data
	Kerangka Penelitian

	HASIL DAN PEMBAHASAN
	Preprocessing
	Image Augmentation
	Feature Learning pada CNN
	Convolution Layer
	Batch Normalization Layer
	Rectified Linear Unit (ReLU)
	Pooling Layer
	Concatenation Layer
	Global Average Pooling (GAP) Layer

	Klasifikasi RELM
	Proses Training
	Proses Testing

	Pengujian Model dan Evaluasi Sistem
	Integrasi Keilmuan

	PENUTUP
	Kesimpulan
	Saran

	DAFTAR PUSTAKA
	LAMPIRAN


